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LETTER TO THE EDITOR

A quantitative study of pinning of a 2p electron crystal in
heterojunctions

5 T Chui
Bartol Research Institute, University of Delaware, Newark, DE 19716, USA

Received 17 June 1993

Abstract, We study numerically the relaxation and the pinning gap of a 2D electron crystal
in the presence of randomly distrdbuted distant dopants, Our results agree with experiments
and with analytic calculations based on a perturbation in the deviations of the particle positions
&r/a from the lattice positions. For parameters corresponding to the recent experimental studies
{d/a ~ 3, the relaxation i1s dominated by the longitudinal mode.

Recently there has been much interest in the low-density limit of 2D electrons in GaAs
heterojunctions in an external magnetic field [1-11) and Si-MOSFETs in high [12~14] and
zero [15, 16] fields where a freezing transition to a solid seems to occur as the density is
lowered.

To investigate the pinning of the electron crystal by distant dopants of concentration
f; randomly distributed at positions R; at a sethack distance d, we study numerically the
relaxation of the lattice of spacing a and density 1/a. [17]). Pinning has been studied
qualitatively in the context of charge density waves [18, 19] and more recently for the 2D
electron crystals [20-22]. These works focus on the transverse relaxation. We found by
our essentially exact calculation that the longitudinal relaxation is larger than the transverse
relaxation by two orders of magnitude for parameters corresponding to the experimentally
studied systems (d/a = 3. ma. = 2.r; = 2.2) [2]. The average deviation of the particle
positions 8r/a from the lattice positions is 0.05. This suggests that analytic perturbation
calculations in the variable are a good approximation. Indeed, the difference between our
perturbation result and our numerical result for the relaxation is less than 1%. The numerical
pinning gap agrees to within 5% with the perturbation result given by

mA? = 0.09n;a%*Jed’.

To compare with experimental results it is necessary to take into account the effect of the
quantum fluctuation, which reduces the phonon frequencies by approximately 30%; the
fluctuation in the setback distances d, so that 1/d° is replaced by (I/d°}; and other possible
charges which are further away but may be more numerous. For parameters corresponding
to the system studied by Paalanen et al, we obtain A = 532 5! and A?/27w, = 0.9 GHz
[19] (filling factor = 0.167) whereas the experimental result is 1 GHz. The agreement
is reasonable in view of the fact that there is some uncertainty in our input experimental
parameters.

Previous theoretical stadies of the gap focused on contributions from transverse
relaxation af long wavelengths which were identified as the domain size. Qur analytic
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results suggest the following picture in the present case: the impurities are coupled to the
transverse phonon mode only through large momentum transfer Umklapp processes. Since
the Fourier transform of the impurity potential decreases exponentially as the momentum
is increased [21,23] and due to large thermal and quanturn fluctuation near melting, the
pinning gap is dominated by non-divergent contributions from longitudinal relaxations of
all length scales larger than d. We now describe our resulis in detail.

First the numerical calculation. The external impurity potential is given by [21, 23]

Ui(ry =) Vg expliq - [R, — g — T}/ A
2.f

where V, = 2m exp(—dg)/a.q is the Fourier transform of the Coulomb potential. We
looked at systems of 56, 120 and 224 particies under periodic boundary conditions. The
Ewald sum technique is used to deal with the long-range nature of the potential U/, as well as
the inter-particle Conlomb potential. For each size we investigate 40 samples corresponding
to different random distributions of the dopant positions R;. It is possible to deal with a
distribution of setback distance 4 but for simplicity we assume that it is fixed. We start
with a triangular lattice of particles at positions ryp. The relaxation is accomplished with the
quasi-Newton method [17] so that the total energy is minimized. We calculate the pinning
gap for each sample by computing the sum of the second derivative of the impurity potential
over all the electrons. The impurity potential contour and the relaxed particle positions for a
typical sample, for parameters corresponding to an experimentally studied system (d/a = 3,
nia. = 2, ry = 2.2) [2] is illustrated in figure 1(a). The average gap as a function
of sample size is shown in figure 1{(b). We have performed the relaxation calculations
with the full inter-particle Coulomb potential 3,  1/r,; as well as with the harmonic
approximation for the inter-particle potential ), ik (ris = rijeod(rige — riji) ViVl / rijo).
The final results differ by less than 1%. For each sample and size we compute the
deviation of the lattice position and its longitudinal (1) and transverse (t) Fourier transforms
8rg; = 3., (1i — rig) » €4;¢'TT0 /N2 Here ey is the polarization vector for mode j =I, t.
We found that the iongitudinal component is larger than the transverse component by two
orders of magnitude. The difference between these and the perturbation results discussed
below is then computed numerically.
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Figure 1. {a) The impurity potential contour at If; = 3.8,3.5,3.2 and 2.9 and the relaxed
particle positions for a typical sampie at dfa = 3, niay = 2, r, = 2.2. (b) The gap in units
of 1073 Ry/a} = 1.46 x 10*' s~2m* a5 a function of the inverse sample size, The point at
1/N = 0 is the result from the analytic perturbation calculation. The line is a spline fit throught
the points o guide the eye.
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We next describe the perturbation calculation. The total energy is
mawp, 8 /2 + Y Vo expliq - [R; — rio — $m])/A.

Here A is the area of the system. Minimizing the energy with respect to 8r, we obtain to
lowest order in 67 the equation

Srg =iy Vig+ D+ G) - eqlexp(—iR, - [q+ G]
G)j

— (((g + G)8r)*)/2)/ [V Nagmaw};. (1)

The factor exp[—{((g + G) - 6ro}*}/2] is obtained from a cumulant expansion. 3rg includes
contributions from both the thermal and the quantum fluctuations. Since the pinning
potential is non-linear, it contains a term proportional to (3r)2, the coefficient of which
provides for the pinning gap. This coefficient is the second derivative of U; with respect to
8r given by

mat = —0.5%"V(g)g? exp(—i(R; — r —m) - @ — ((g6r)?)/2)/A.
qi

The impurity average of this, to the lowest order of dr, is

AT=05n Y [VE+G)p+ G- epmlexp(~((g + G)5r)*))
PG

x [(p+ @F/Am*w}, . )

A similar formula for the gap was derived recently by Ferconi er al [22] from density
functional considerations. We have computed the difference A(Sr) between (1) and the
results from our numerical relaxation studies and found that the ratio

[Z(A(@m.;))z] / [Z(arq‘ j)z] ~0.01.
q.j g,/

Equation (2) is a sum of contributions from the transverse and the longitudinal
phonons: A% = A2 = AZ The wransverse contribution is approximately equal to
A? = 4w V(G) exp(—{(G -8r)%3/2)n; log(L /a) /3m*sia* where L is the lower limit cut-off.
It can be the domain or the sample size. The presence of the dot product means that the
dominant contribution comes from Umklapp terms with G # 0. Except for the logarithmic
factors, which were emphasized recently by Ferconi et al, this expression is essentially
that discussed by previous authors {20]. When d/a is small and away from melting, this
contribution and the logarithmic factor will be important. This contribution may appear
divergent, but for practical purposes is extremely small. Near melting, G2((8r))/a® = 8;
in addition V{(G) = exp(—2Gd) & exp(—36). Thus for this contribution to be significant,
L/a > exp(exp(42)). This is much greater than any normal sample size.

The longitudinal contribution is, in the limit & 3> a, approximately given by

mA} = 0.09n,a%" /(ed”)

and is not proportional 10 V(G).  Also, the comresponding Debye-Waller factor
exp(—gq>({8r)?)), is close to unity and much larger. Thus the longitudinal contribution is
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much larger than the transverse contribution. The same reasoning applies to the displacement
8rg1,c where we found the longitudinal displacement is larger than the transverse displacement
by two orders of magnitude. For the longitudinal component, the sum over the momenta
is not divergent even if the gap is equal to zero. Equation (2) contains contributions
from all wave vectors p less than 1/d, whereas previous studies emphasized contributions
from relaxations of a dominant Fourier compenent identified as the inverse domain size.
The relaxation consists of all Fourier components at length scales larger than the setback
distance and is not dominated by a single Fourier component. Thus a description in terms
of domain may not be appropriate.

In conclusion, we have calculated the relaxation and pinning gap of electron crystals in
2D in the presence of random distant dopants. We found agreement between numerical
relaxation studies, analytic self-consistent perturbation calculations, and experimental
results, Since the Fourier transform of the potential falls off rapidly with momentum,
the longitudinal component of the relaxation dominates over the transverse component. A
simple formula that depends on the lattice spacing squared and the setback distance to
the inverse third power is derived. The experimentally observed depinning electric field
Eq4p [6,7] is much smaller than the scale set by the pinning gap mAZa [24]; we think the
depinning electric field is related to the creation of defects [9-11] but this is beyond the
scope of the present paper.

We thank G Vignale for sending us a copy of his work. We also thank E Andrei and R
Willett for belpful information.
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