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LETTER TO THE EDITOR 

A quantitative study of pinning of a 2D electron crystal in 
heterojunctions 

S T Chui 
Bmol Research Institute, University of Delaware, Newark, DE 19716. USA 

Received 17 lune 1993 

Abstnct. We study numerically the relaxation and the pinning gap of a 20 elecmn crystal 
in the presence of nndamly distributed distant dopants. Our results agree with experiments 
and with analytic calculations based on a pertnrbation in the deviations of the particle positions 
Srln from the lattice positions. For pmmeten wrresponding to the recent experimental studies 
( d / a  3). the relaxation is dominated by the longitudinal mode. 

Recently there has been much interest in the low-density limit of ZD electrons in GaAs 
heterojunctions in an external magnetic field [l-111 and si-MOSFETS in high [12-141 and 
zero [15,16] fields where a freezing transition to a solid seems to occur as the density is 
lowered. 

To investigate the pinning of the electron crystal by distant dopants of concentration 
ni randomly distributed at positions Rj at a setback distance d,  we study numerically the 
relaxation of the lattice of spacing a and density l/a, [17]. Pinning has been studied 
qualitatively in the context of charge density waves [18, 191 and more recently for the 2D 
electron crystals [20-22]. These works focus on the transverse relaxation. We found by 
our essentially exact calculation that the longitudinal relaxation is larger than the transverse 
relaxation by two orders of magnitude for parameters corresponding to the experimentally 
studied systems (d/a = 3. &ac = 2.  r, = 2.2) [ Z ] .  The average deviation of the particle 
positions 6r/a from the lattice positions is 0.05. This suggests that analytic perturbation 
calculations in the variable are a good approximation. Indeed, the difference between our 
perturbation result and our numerical result for the relaxation is less than 1%. The numerical 
pinning gap agrees to within 5% with the perturbation result given by 

mAZ = 0.09nia2e2/~d3. 

To compare with experimental results it is necessary to take into account the effect of the 
quantum fluctuation, which reduces the phonon frequencies by approximately 30%; the 
fluctuation in the setback distances d ,  so that l/d’ is replaced by ( l / d 3 ) ;  and other possible 
charges which are further away but may be more numerous. For parameters corresponding 
to the system studied by Paalanen et al, we obtain A = 532 s-‘ and A2/2nw, = 0.9 GHz 
1191 (filling factor = 0.167) whereas the experimental result is 1 GHz. The agreement 
is reasonable in view of the fact that there is some uncertainty in our input experimental 
parameters. 

Previous theoretical studies of the gap focused on contributions from transverse 
relaxation a t  long wavelengths which were identified as the domain size. Our analytic 
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results suggest the following picture in the present case: the impurities are coupled to the 
transverse phonon mode only through large momentum transfer Umklapp processes. Since 
the Fourier transform of the impurity potential decreases exponentially as the momentum 
is increased [21,23] and due to large thermal and quantum fluctuation near melting, the 
pinning gap is dominated by non-divergent contributions from longitudinal relaxations of 
all length scales larger than d. We now describe our results in detail. 

First the numerical calculation. The external impurity potential is given by [2l,23] 

U i ( r )  = V, exp(iq. [EJ - TIO - W ) / A  
s.i 

where V, = 2n exp(-dq)/a,q is the Fourier transform of the Coulomb potential. We 
looked at systems of 56, 120 and 224 particles under periodic boundary conditions. The 
Ewald sum technique is used to deal with the long-range nature of the potential U ,  as well as 
the inter-particle Coulomb potential. For each size we investigate 40 samples corresponding 
to different random distributions of the dopant positions R j .  It is possible to deal with a 
distribution of setback distance d but for simplicity we assume that it is fixed. We start 
with a triangular lattice of particles at positions ria. The relaxation is accomplished with the 
quasi-Newton method [17] so that the total energy is minimized. We calculate the pinning 
gap for each sample by computing the sum of the second derivative of the impurity potential 
over all the electrons. The impurity potential contour and the relaxed particle positions for a 
typical sample, for parameters corresponding to an experimentally studied system (dla = 3, 
niac = 2, r, = 2.2) I21 is illustrated in figure l(a). The average gap as a function 
of sample size is shown in figure I(b). We have performed the relaxation calculations 
with the full inter-particle Coulomb potential Ci,, l / r c j  as well as with the harmonic 
approximation for the inter-particle potenlial C,,j,R,I (ryA - r;jxo)(ri,l - rijto)VlVk(l / r i j o ) .  

The final results differ by less than 1%. For each sample and size we compute the 
deviation of the lattice position and its longitudinal (I) and transverse (t) Fourier transforms 
B T , ~  = C,(ri - ria). eq,e'*'Io/N'p. Here e,) is the polarization vector for mode j =I,  t. 
We found that the IongitudinaI component is larger than the transverse component by two 
orders of magnitude. The difference between these and the perturbation results discussed 
below is then computed numerically. 

Figurc 1. ((2) The impurity potential contour af Uj = 3.8,3.5,3.2 and 2.9 and the d a c d  
particle positions for a typicl sample af d/a  = 3, nia, = 2, 'r = 2.2. (6) The gap in units 
of 1 0 - 5 R y / ~ i  = 1.46 x 10" s-'m+ as a function of the inverse sample size. The point at 
1 / N  = 0 is the wult  fmm the annlytic perturbation calculation. The linc is a spline fit thought 
the points to guide the eye. 
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We next describe the perturbation calculation. The total enerm is 

Here A is the area of the system. Minimizing the energy with respect to Sr,  we obtain to 
lowest order in Sr the equation 

 ST^^ = i V(q + G)[(q + G) . e,,] exp(-iR, [Q +GI 
GJ 

- ( ( (4  + G ) W 2 ) / 2 ) / [ f i w w $  (1) 

The factor exp[-(((q + G) . Sr0)*)/2] is obtained from a cumulant expansion. Sro includes 
contributions from both the thermal and the quantum fluctuations. Since the pinning 
potential is non-linear, it contains a term proportional to (Jr)’, the coefficient of which 
provides for the pinning gap. This coefficient is the second derivative of U, with respect to 
Sr given by 

mA2 = -0.5 V(p)q2 exp(-i(Rj - TIO - STI) . q - ((q&-)’)/Z)/A. 
qi 

The impurity average of this, to the lowest order of 6r,  is 

A’ = 0.5ni [ V ( p  + G)(p  + G) . ep,I2exp(-(((q + G)Sr)’)) 
P . G . ~  

A similar formula for the gap was derived recently by Ferconi et al 1221 from density 
functional considerations. We have computed the difference A(&) between (1) and the 
results from our numerical relaxation studies and found that the ratio 

Equation (2) is a sum of contributions from the transverse and the longitudinal 
phonons: A’ = A; = A:. The transverse contribution is approximately equal to 
A: = 4~V(G)’exp(-((G.Sr)~)/Z)ni log(l/a)/3m2s:a4 where L is the lower limit cut-off. 
It can be the domain or the sample size. The presence of the dot product means that the 
dominant contribution comes from Umklapp terms with G # 0. Except for the logarithmic 
factors, which were emphasized recently by Ferconi et a[, this expression is essentially 
that discussed by previous authors [ZO]. When d/a is small and away from melting, this 
contribution and the logarithmic factor will be important. This contribution may appear 
divergent, but for practical purposes is extremely small. Near melting, G’((Sr)’)/a’ N 8; 
in addition V ( G )  = exp(-ZGd) c( exp(-36). Thus for this contribution to be significant, 
L/a  > exp(exp(42)). This is much greater than any normal sample size. 

The longitudinal contribution is, in the limit d >> U ,  approximately given by 

mA: = 0 .09n ,aZe2 / (~d3)  

and is not proportional to V(G). Also, the corresponding Debye-Waller factor 
exp(-q’((Sr)’)), is close to unity and much larger. Thus the longitudinal contribution is 
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much larger than the transverse contribution. The same reasoning applies to the displacement 
where we found the longitudinal displacement is larger than the transverse displacement 

by two orders of magnitude. For the longitudinal component, the sum over the momenta 
is not divergent even if the gap is equal to zero. Equation (2) contains contributions 
from all wave vectors p less than l/d, whereas previous studies emphasized contributions 
from relaxations of a dominant Fourier component identified as the inverse domain size. 
The relaxation consists of all Fourier components at length scales larger than the setback 
distance and is not dominated by a single Fourier component. Thus a description in terms 
of domain may not be appropriate. 

In conclusion. we have calculated the relaxation and pinning gap of electron crystals in 
2D in the presence of random distant dopants. We found agreement between numerical 
relaxation studies, analytic self-consistent perturbation calculations, and experimental 
results. Since the Fourier transform of the potential falls off rapidly with momentum, 
the longitudinal component of  the relaxation dominates over the transverse component. A 
simple formula that depends on the lattice spacing squared and the setback distance to 
the inverse thud power is derived. The experimentally observed depinning electric field 
Edp [6,7] is much smaller than the scale set by the pinning gap mA2n 1241; we think the 
depinning electric field is related to the creation of defects [9-111 but this is beyond the 
scope of the present paper. 

We thank G Vignale for sending us a copy of his work. We also thank E Andrei and R 
Willett for helpful information. 
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